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Source Identification

Identification of the physical sources (forcings) causing spatial and
temporal variation of state variables

Variations can be caused by various natural or anthropogenic sources
The identification of forcings (the source identification) can be crucial
for conceptualization and model development

If the forcings are successfully “unmixed” from the observations,
decoupled physics models may then be applied to analyze the
propagation of each forcing independently
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Source Identification Methods

» Statistical methods ...

» Model inversion ...

» Blind Source Separation ( ) ...
» unsupervised

objective

adaptive

machine-learning algorithm

model-free inversion
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Blind Source Separation (BSS)

» Retrieve the unknown forcing signals (sources) S, «, that have
produced observation records, H,,, with unknown noise
(measurement errors) E, .,

prm = prv'ATXm + prma

A, . is unknown “ ” matrix

m is the number of the recording sensors (observation wells)
r is the number of unknown signals ( )

p is the number of discretized moments in time at which the signals are
recorded at the sensors

» The problem is ill-posed and the solutions are non-unique
> performs optimization with constraints, such as:
maximum variability

statistical independence

component non-negativity

smoothness

simplicity, etc.
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Blind source separation methods

>

: Independent Component Analysis
Maximizing the statistical independence of the retrieved forcings signals
in S (i.e. the matrix columns are expected to be independent) by
maximizing some high-order statistics for each source signal, such as the
kurtosis or negentropy (negative entropy).
The main idea behind is that, while the probability distribution of a
linear mixture of sources in H is expected to be close to a Gaussian (the
Central Limit Theorem), the probability distribution of the original
independent sources is expected to be non-Gaussian.

: Non-negative Matrix Factorization

Non-negativity constraint on the original sources in S and their mixing
components in A
As a result, the observed data are representing only additive signals that
cannot cancel mutually.
Additivity and non-negativity requirements lead to a sparseness in both
the signal S and mixing A matrices
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Non-negative Matrix Factorization (NMF)

» Generate random initial guesses for S and A
» Update S and A (n is a small arbitrary positive constant):

s A
J,t * q,)
= , Sq.j S SqiTs < =
[STSA] 4 o [SA*A*T} 1y
Js? q,]

*

a ieam-

» Loop till some convergence criteria are satisfied (e.g., based on
objective function and/or number of iterations).
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Improved NMF (NMF + k-means = NMFk)

» We propose an improved coupled with analysis (we
call it )
» Perform a series of analyses for a series of different

predetermined initial guesses for the number of sources
(r=1,2,...,m).

» For each r value, perform F runs with a series (n) of different
random initial guesses S and A

(the total number of solutions is m(m+1)

2

» All the obtained solutions for given r (r x n) are clustered
based on the cosine similarity between the estimated sources using
k-means analysis where k = r (k-means clustering is performed m
times)

» The optimal number of sources is identified based on the Objective
function O and Silhouette width C

X n).
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NMFk criteria: Objective function

» Objective function O based on Frobenius norm:

2
1 o 2 m r o
0= ([Fr-8+a],) =33 has = X
i=1 g=1 7j=1
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NMFk criteria: Silhouette width

» Cosine distance (cosine similarity) p representing the similarity
between any two forcing signals j; and j2 (sq;, and sg j,):

P
Zq 1 5¢,j1 54,72

\/Zq 1(Sg.51) \/Zq 1(84,42)?

p(j1,J2) =

» Silhouette value (cy) for each solution based on the cosine similarity
Rm d— Rout d
cqg = : — Vd=1,...,nXr
max [Rin,dv Rout,d]
> Rin.a = E(p(jin, ja)) similarity with solutions within the cluster
> Rout,d = E(p(jout, ja)) similarity with solutions outside the cluster
» If ¢4 — 1, the element is appropriately clustered; if ¢; =~ 0, the element
is between two clusters (if c; — —1, the clustering failed).
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NMFk criteria: Silhouette width

» Silhouette width C of k-means results for a given r is:
C=E(eg),d=1,...nxr

» The optimal number of sources is identified based on the Objective
function O and Silhouette width C for a given r.
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Stability

Frobenius norm

1

0.8
£

06 ©
3
U
-]
Q
3
o

04 =
wv

— 0.2

=®~Frobenius norm
=@-Silhouette width
0
1 2 3 4 5
Number of Sources
Blind source separation Non-negative Matrix Factorization Data Results Conclusions
000000 00000 [e]e] @00000000000000 [e]e]



Signals
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Reconstruction of R-11

Blind source separation
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Reconstruction of R-13
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Reconstruction of R-15
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Signal #1 - Barometric pressure
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Signal #2 - PM-4 water-supply pumping
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Signal #3 - All the other pumping wells (without PM-4)
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Source locations

NMF/ can be extended to identify the location of the sources (pumping
wells) as well ... J
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Synthetic test problem: Water-level input
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Synthetic test problem: Water-level matches
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Synthetic test problem: Estimated source locations
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Conclusions

v

combines the strengths of standard NMF (Non-negative Matrix
Factorization) and k-means clustering for characterization of unknown
forcing signals in observed state variables

can be applied to unmix transients in groundwater levels
can be applied to find the source locations

Additional work is needed to add known forcing signals (e.g. linear
decline) in the analyses

Future work can address uncertainty associated with estimated
forcing signals

Future work will also provide coupling between with
physics-based inverse models
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Thank you!

/a1l

» Alexandrov & Vesselinov, Blind source separation for groundwater
level analysis based on non-negative matrix factorization, Water
Resources Research, doi: 10.1002/2013WR015037, 2014.

> is coded in Julia

julia
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