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Water-level data
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Well locations
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Source Identification

I Identification of the physical sources (forcings) causing spatial and
temporal variation of state variables

I Variations can be caused by various natural or anthropogenic sources
I The identification of forcings (the source identification) can be crucial

for conceptualization and model development
I If the forcings are successfully “unmixed” from the observations,

decoupled physics models may then be applied to analyze the
propagation of each forcing independently
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Source Identification Methods

I Statistical methods ...
I Model inversion ...
I Blind Source Separation (BSS) ...

I unsupervised
I objective
I adaptive
I machine-learning algorithm
I model-free inversion
I Jutten and Herault, 1991, Zarzoso and Nandi, 1999
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Blind Source Separation (BSS)

I Retrieve the unknown forcing signals (sources) Sp×r that have
produced observation records, Hp×m with unknown noise
(measurement errors) Ep×m:

Hp×m = Sp×rAr×m +Ep×m,

I Ar×m is unknown “mixing” matrix
I m is the number of the recording sensors (observation wells)
I r is the number of unknown signals (m > r)
I p is the number of discretized moments in time at which the signals are

recorded at the sensors
I The problem is ill-posed and the solutions are non-unique
I BSS performs optimization with constraints, such as:

I maximum variability
I statistical independence
I component non-negativity
I smoothness
I simplicity, etc.
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Blind source separation methods

I ICA: Independent Component Analysis
I Maximizing the statistical independence of the retrieved forcings signals

in S (i.e. the matrix columns are expected to be independent) by
maximizing some high-order statistics for each source signal, such as the
kurtosis or negentropy (negative entropy).

I The main idea behind ICA is that, while the probability distribution of a
linear mixture of sources in H is expected to be close to a Gaussian (the
Central Limit Theorem), the probability distribution of the original
independent sources is expected to be non-Gaussian.

I NMF: Non-negative Matrix Factorization
I Non-negativity constraint on the original sources in S and their mixing

components in A
I As a result, the observed data are representing only additive signals that

cannot cancel mutually.
I Additivity and non-negativity requirements lead to a sparseness in both

the signal S and mixing A matrices
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Non-negative Matrix Factorization (NMF)

I Generate random initial guesses for S̃ and Ã

I Update S̃ and Ã (η is a small arbitrary positive constant):

a∗j,i ← aj,i

[
S̃TH

]
j,i[

S̃TS̃Ã
]
j,i

+ η
, s∗q,j ← sq,j

[
HÃ∗T

]
q,j[

S̃Ã∗Ã∗T
]
q,j

+ η

I Loop till some convergence criteria are satisfied (e.g., based on
objective function and/or number of iterations).
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Improved NMF (NMF + k-means = NMFk)

I We propose an improved NMF coupled with k-means analysis (we
call it NMFk)

I Perform a series of NMF analyses for a series of different
predetermined initial guesses for the number of sources
(r = 1, 2, ...,m).

I For each r value, perform NMF runs with a series (n) of different
random initial guesses S̃ and Ã

(the total number of solutions is m∗(m+1)
2 × n).

I All the obtained solutions for given r (r × n) are k-means clustered
based on the cosine similarity between the estimated sources using
k-means analysis where k = r (k-means clustering is performed m
times)

I The optimal number of sources is identified based on the Objective
function O and Silhouette width C
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NMFk criteria: Objective function

I Objective function O based on Frobenius norm:

O =
1

2

(∥∥∥H− S̃ ∗ Ã
∥∥∥
F

)2
=

m∑
i=1

p∑
q=1

hq,i − r∑
j=1

s̃q,j ãj,i

2

.
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NMFk criteria: Silhouette width

I Cosine distance (cosine similarity) ρ representing the similarity
between any two forcing signals j1 and j2 (s̃q,j1 and s̃q,j2):

ρ(j1, j2) = 1−
∑p

q=1 s̃q,j1 s̃q,j2√∑p
q=1(s̃q,j1)

2
√∑p

q=1(s̃q,j2)
2
.

I Silhouette value (cd) for each solution based on the cosine similarity

cd =
Rin,d −Rout,d

max [Rin,d, Rout,d]
, ∀ d = 1, ..., n× r

I Rin,d = E〈ρ(jin, jd)〉 similarity with solutions within the cluster
I Rout,d = E〈ρ(jout, jd)〉 similarity with solutions outside the cluster
I If cd → 1, the element is appropriately clustered; if cd ≈ 0, the element

is between two clusters (if cd → −1, the clustering failed).
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NMFk criteria: Silhouette width

I Silhouette width C of k-means results for a given r is:

C = E〈cd〉, d = 1, ..., n× r

I The optimal number of sources is identified based on the Objective
function O and Silhouette width C for a given r.
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Well locations
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Water-level data
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Stability
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Signals
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Reconstruction of R-6
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Reconstruction of R-11
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Reconstruction of R-13
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Reconstruction of R-15
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Reconstruction of R-28
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Signal #1 - Barometric pressure
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Signal #2 - PM-4 water-supply pumping
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Signal #3 - All the other pumping wells (without PM-4)
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Source locations

NMFk can be extended to identify the location of the sources (pumping
wells) as well ...
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Synthetic test problem (based on the LANL site)
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Synthetic test problem: Water-level input
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Synthetic test problem: Water-level matches
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Synthetic test problem: Estimated source locations
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Conclusions

I NMFk combines the strengths of standard NMF (Non-negative Matrix
Factorization) and k-means clustering for characterization of unknown
forcing signals in observed state variables

I NMFk can be applied to unmix transients in groundwater levels
I NMFk can be applied to find the source locations
I Additional work is needed to add known forcing signals (e.g. linear

decline) in the analyses
I Future work can address uncertainty associated with estimated

forcing signals
I Future work will also provide coupling between NMFk with

physics-based inverse models
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Thank you!

I Alexandrov & Vesselinov, Blind source separation for groundwater
level analysis based on non-negative matrix factorization, Water
Resources Research, doi: 10.1002/2013WR015037, 2014.

I NMFk is coded in Julia
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